Let be a non-degenerate planar curve. We show that the curve is of Khintchine-type for convergence in the case of simultaneous approximation in with two independent approximation functions; that is if a certain sum converges then the set of all points (x,y) on the curve which satisfy simultaneously the inequalities ||qx|| < ψ1(q) and ||qy|| < ψ2(q) infinitely often has induced measure 0. This completes the metric theory for the Lebesgue case. Further, for multiplicative approximation ||qx|| ||qy|| < ψ(q) we establish a Hausdorff measure convergence result for the same class of curves, the first such result for a general class of manifolds in this particular setup.