We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Mapping every simplex in the Delaunay mosaic of a discrete point set to the radius of the smallest empty circumsphere gives a generalized discrete Morse function. Choosing the points from a Poisson point process in ℝn, we study the expected number of simplices in the Delaunay mosaic as well as the expected number of critical simplices and nonsingular intervals in the corresponding generalized discrete gradient. Observing connections with other probabilistic models, we obtain precise expressions for the expected numbers in low dimensions. In particular, we obtain the expected numbers of simplices in the Poisson–Delaunay mosaic in dimensions n ≤ 4.
We show that the expected number of maximal empty axis-parallel boxes amidst n random points in the unit hypercube [0,1]d in $\mathbb{R}^d$ is (1 ± o(1)) $\frac{(2d-2)!}{(d-1)!}$n lnd−1n, if d is fixed. This estimate is relevant to analysis of the performance of exact algorithms for computing the largest empty axis-parallel box amidst n given points in an axis-parallel box R, especially the algorithms that proceed by examining all maximal empty boxes. Our method for bounding the expected number of maximal empty boxes also shows that the expected number of maximal empty orthants determined by n random points in $\mathbb{R}^d$ is (1 ± o(1)) lnd−1n, if d is fixed. This estimate is related to the expected number of maximal (or minimal) points amidst random points, and has application to algorithms for coloured orthogonal range counting.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.