We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The characteristic – Planck – energy scale of quantum gravity makes experimental access to the relevant physics apparently impossible. Nevertheless, low energy experiments linking gravity and the quantum have been undertaken: the Page and Geilker quantum Cavendish experiment, and the Colella-Overhauser-Werner neutron interferometry experiment, for instance. However, neither probes states in which gravity remains in a coherent quantum superposition, unlike – it is claimed – recent proposals. In essence, if two initially unentangled subsystems interacting solely via gravity become entangled, then theorems of quantum mechanics show that gravity cannot be a classical subsystem. There are formidable challenges to such an experiment, but remarkably, tabletop technology into the gravity of very small bodies has advanced to the point that such an experiment might be feasible in the near future. This Element explains the proposal and what it aims to show, highlighting the important ways in which its interpretation is theory-laden.
Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor, stochastic gravity is based on the Einstein–Langevin equation, which in addition has sources due to the noise kernel. The noise kernel is a bitensor which describes the quantum stress-energy tensor fluctuations of the matter fields. In this chapter we describe the fundamentals of this theory using an axiomatic and a functional approach. In the axiomatic approach, the equation is introduced as an extension of semiclassical gravity motivated by the search for self-consistent equations describing the backreaction of the stress-energy fluctuations on the gravitational field. We then discuss the equivalence between the stochastic correlation functions for the metric perturbations and the quantum correlation functions in the 1/N expansion, and illustrate the equivalence with a simple model. Based on the stochastic formulation, a criterion for the validity of semiclassical gravity is proposed. Alternatively, stochastic gravity is formulated using the Feynman–Vernon influence functional based on the open quantum system paradigm, in which the system of interest (the gravitational field) interacts with an environment (the matter fields).
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.