We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Randomized clinical trials (RCT) are the foundation for medical advances, but participant recruitment remains a persistent barrier to their success. This retrospective data analysis aims to (1) identify clinical trial features associated with successful participant recruitment measured by accrual percentage and (2) compare the characteristics of the RCTs by assessing the most and least successful recruitment, which are indicated by varying thresholds of accrual percentage such as ≥ 90% vs ≤ 10%, ≥ 80% vs ≤ 20%, and ≥ 70% vs ≤ 30%.
Methods:
Data from the internal research registry at Columbia University Irving Medical Center and Aggregated Analysis of ClinicalTrials.gov were collected for 393 randomized interventional treatment studies closed to further enrollment. We compared two regularized linear regression and six tree-based machine learning models for accrual percentage (i.e., reported accrual to date divided by the target accrual) prediction. The outperforming model and Tree SHapley Additive exPlanations were used for feature importance analysis for participant recruitment. The identified features were compared between the two subgroups.
Results:
CatBoost regressor outperformed the others. Key features positively associated with recruitment success, as measured by accrual percentage, include government funding and compensation. Meanwhile, cancer research and non-conventional recruitment methods (e.g., websites) are negatively associated with recruitment success. Statistically significant subgroup differences (corrected p-value < .05) were found in 15 of the top 30 most important features.
Conclusion:
This multi-source retrospective study highlighted key features influencing RCT participant recruitment, offering actionable steps for improvement, including flexible recruitment infrastructure and appropriate participant compensation.
Cirrus clouds are key modulators of Earth’s climate. Their dependencies on meteorological and aerosol conditions are among the largest uncertainties in global climate models. This work uses 3 years of satellite and reanalysis data to study the link between cirrus drivers and cloud properties. We use a gradient-boosted machine learning model and a long short-term memory network with an attention layer to predict the ice water content and ice crystal number concentration. The models show that meteorological and aerosol conditions can predict cirrus properties with R2 = 0.49. Feature attributions are calculated with SHapley Additive exPlanations to quantify the link between meteorological and aerosol conditions and cirrus properties. For instance, the minimum concentration of supermicron-sized dust particles required to cause a decrease in ice crystal number concentration predictions is 2 × 10−4 mg/m3. The last 15 hr before the observation predict all cirrus properties.