We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We introduce a class of notions of forcing which we call
$\Sigma $
-Prikry, and show that many of the known Prikry-type notions of forcing that centers around singular cardinals of countable cofinality are
$\Sigma $
-Prikry. We show that given a
$\Sigma $
-Prikry poset
$\mathbb P$
and a name for a non-reflecting stationary set T, there exists a corresponding
$\Sigma $
-Prikry poset that projects to
$\mathbb P$
and kills the stationarity of T. Then, in a sequel to this paper, we develop an iteration scheme for
$\Sigma $
-Prikry posets. Putting the two works together, we obtain a proof of the following.
Theorem. If
$\kappa $
is the limit of a countable increasing sequence of supercompact cardinals, then there exists a forcing extension in which
$\kappa $
remains a strong limit cardinal, every finite collection of stationary subsets of
$\kappa ^+$
reflects simultaneously, and
$2^\kappa =\kappa ^{++}$
.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.