We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider steady states with mass constraint of the fourth-order thin-film equation with van der Waals force in a bounded domain which leads to a singular elliptic equation for the thickness with an unknown pressure term. By studying second-order nonlinear ordinary differential equation,
we prove the existence of infinitely many radially symmetric solutions. Also, we perform rigorous asymptotic analysis to identify the blow-up limit when the steady state is close to a constant solution and the blow-down limit when the maximum of the steady state goes to the infinity.
In this paper we deal with a singular elliptic problem involving an asymptotically linear nonlinearity and depending on two positive parameters. We investigate the existence, uniqueness and non-existence of the minima of the functional associated with the problem and, by employing a natural and very general definition of a weak solution, we also obtain a bifurcation-type result.
Let Ω ⊂ ℝN be a bounded domain such that 0 ∈ Ω, N ≥ 3, 2*(s) = 2(N − s)/(N − 2), 0 ≤ s < 2, . We obtain the existence of infinitely many solutions for the singular critical problem with Dirichlet boundary condition for suitable positive number λ.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.