We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter introduces the Sobolev spaces and self-adjointellipticoperators on those spaces that will be used through the book. It also introduces basic concepts and tools such as Gelfand triples, the Sobolev embedding theorem, the equivalence between energy norm and the Sobolev space norm, the dual norm, the Green's function, and eigenfunctions.
Given an open set with finite perimeter $\Omega \subset {\open R}^n$, we consider the space $LD_\gamma ^{p}(\Omega )$, $1\les p<\infty $, of functions with pth-integrable deformation tensor on Ω and with pth-integrable trace value on the essential boundary of Ω. We establish the continuous embedding $LD_\gamma ^{p}(\Omega )\subset L^{pN/(N-1)}(\Omega )$. The space $LD_\gamma ^{p}(\Omega )$ and this embedding arise naturally in studying the motion of rigid bodies in a viscous, incompressible fluid.
This paper considers the Ricci flow coupled with the harmonic map flow between two manifolds. We derive estimates for the fundamental solution of the corresponding conjugate heat equation and we prove an analogue of Perelman's differential Harnack inequality. As an application, we find a connection between the entropy functional and the best constant in the Sobolev embedding theorem in ℝn.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.