We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This article aims to establish fractional Sobolev trace inequalities, logarithmic Sobolev trace inequalities, and Hardy trace inequalities associated with time-space fractional heat equations. The key steps involve establishing dedicated estimates for the fractional heat kernel, regularity estimates for the solution of the time-space fractional equations, and characterizing the norm of $\dot {W}^{\nu /2}_p(\mathbb {R}^n)$ in terms of the solution $u(x,t)$. Additionally, fractional logarithmic Gagliardo–Nirenberg inequalities are proven, leading to $L^p-$logarithmic Sobolev inequalities for $\dot {W}^{\nu /2}_{p}(\mathbb R^{n})$. As a byproduct, Sobolev affine trace-type inequalities for $\dot {H}^{-\nu /2}(\mathbb {R}^n)$ and local Sobolev-type trace inequalities for $Q_{\nu /2}(\mathbb {R}^n)$ are established.
where Ω = ℝN or Ω = B1, N ⩾ 3, p > 1 and . Using a suitable map we transform problem (1) into another one without the singularity 1/|x|2. Then we obtain some bifurcation results from the radial solutions corresponding to some explicit values of λ.
Our aim in this paper is to deal with Sobolev inequalities for Riesz potentials of functions in Lebesgue spaces of variable exponents near Sobolev’s exponent over nondoubling metric measure spaces.
In this article we study the positivity of the 4-th order Paneitz operator
for closed 3-manifolds. We prove that the connected sum of two such
3-manifold retains the same positivity property. We also solve the
analogue of the Yamabe equation for such a manifold.
In this paper we prove that there is no nontrivial ${{L}^{q}}$-integrably $p$-harmonic 1-form on a complete manifold with nonnegatively Ricci curvature $\left( 0\,<\,q\,<\,\infty \right)$.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.