We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present some key concepts and tools in the field of geometric representation theory. We review the background necessary to state the Springer correspondence for an arbitrary semisimple Lie algebra. We then study the notion of convolution in Borel–Moore homology and see how to apply it to the Springer correspondence. Finally, we reframe these ideas in the language of perverse sheaves and intersection homology.
We review invariants of reflection groups and reflection cosets up to giving a formula for the order of a finite reductive group. We then review the Springer correspondence between local systems on unipotent classes and characters of the Weyl group, and use it to describe the Lusztig–Shoji algorithm to compute Green functions.
On its original publication, this book provided the first elementary treatment of representation theory of finite groups of Lie type in book form. This second edition features new material to reflect the continuous evolution of the subject, including entirely new chapters on Hecke algebras, Green functions and Lusztig families. The authors cover the basic theory of representations of finite groups of Lie type, such as linear, unitary, orthogonal and symplectic groups. They emphasise the Curtis–Alvis duality map and Mackey's theorem and the results that can be deduced from it, before moving on to a discussion of Deligne–Lusztig induction and Lusztig's Jordan decomposition theorem for characters. The book contains the background information needed to make it a useful resource for beginning graduate students in algebra as well as seasoned researchers. It includes exercises and explicit examples.
In this paper we establish Springer correspondence for the symmetric pair $(\text{SL}(N),\text{SO}(N))$ using Fourier transform, parabolic induction functor, and a nearby cycle sheaf construction. As an application of our results we see that the cohomology of Hessenberg varieties can be expressed in terms of irreducible representations of Hecke algebras of symmetric groups at $q=-1$. Conversely, we see that the irreducible representations of Hecke algebras of symmetric groups at $q=-1$ arise in geometry.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.