The biofortification of staple crops with vitamins is an attractive strategy to increase the nutritional quality of human food, particularly in areas where the population subsists on a cereal-based diet. Unlike other approaches, biofortification is sustainable and does not require anything more than a standard food-distribution infrastructure. The health-promoting effects of vitamins depend on overall intake and bioavailability, the latter influenced by food processing, absorption efficiency and the utilisation or retention of the vitamin in the body. The bioavailability of vitamins in nutritionally enriched foods should ideally be adjusted to achieve the dietary reference intake in a reasonable portion. Current vitamin biofortification programmes focus on the fat-soluble vitamins A and E, and the water-soluble vitamins C and B9 (folate), but the control of dosage and bioavailability has been largely overlooked. In the present review, we discuss the vitamin content of nutritionally enhanced foods developed by conventional breeding and genetic engineering, focusing on dosage and bioavailability. Although the biofortification of staple crops could potentially address micronutrient deficiency on a global scale, further research is required to develop effective strategies that match the bioavailability of vitamins to the requirements of the human diet.