We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Statistical literacy is essential in clinical and translational science (CTS). Statistical competencies have been published to guide coursework design and selection for graduate students in CTS. Here, we describe common elements of graduate curricula for CTS and identify gaps in the statistical competencies.
Methods:
We surveyed statistics educators using e-mail solicitation sent through four professional organizations. Respondents rated the degree to which 24 educational statistical competencies were included in required and elective coursework in doctoral-level and master’s-level programs for CTS learners. We report competency results from institutions with Clinical and Translational Science Awards (CTSAs), reflecting institutions that have invested in CTS training.
Results:
There were 24 CTSA-funded respondents representing 13 doctoral-level programs and 23 master’s-level programs. For doctoral-level programs, competencies covered extensively in required coursework for all doctoral-level programs were basic principles of probability and hypothesis testing, understanding the implications of selecting appropriate statistical methods, and computing appropriate descriptive statistics. The only competency extensively covered in required coursework for all master’s-level programs was understanding the implications of selecting appropriate statistical methods. The least covered competencies included understanding the purpose of meta-analysis and the uses of early stopping rules in clinical trials. Competencies considered to be less fundamental and more specialized tended to be covered less frequently in graduate courses.
Conclusion:
While graduate courses in CTS tend to cover many statistical fundamentals, learning gaps exist, particularly for more specialized competencies. Educational material to fill these gaps is necessary for learners pursuing these activities.
It is increasingly essential for medical researchers to be literate in statistics, but the requisite degree of literacy is not the same for every statistical competency in translational research. Statistical competency can range from ‘fundamental’ (necessary for all) to ‘specialized’ (necessary for only some). In this study, we determine the degree to which each competency is fundamental or specialized.
Methods
We surveyed members of 4 professional organizations, targeting doctorally trained biostatisticians and epidemiologists who taught statistics to medical research learners in the past 5 years. Respondents rated 24 educational competencies on a 5-point Likert scale anchored by ‘fundamental’ and ‘specialized.’
Results
There were 112 responses. Nineteen of 24 competencies were fundamental. The competencies considered most fundamental were assessing sources of bias and variation (95%), recognizing one’s own limits with regard to statistics (93%), identifying the strengths, and limitations of study designs (93%). The least endorsed items were meta-analysis (34%) and stopping rules (18%).
Conclusion
We have identified the statistical competencies needed by all medical researchers. These competencies should be considered when designing statistical curricula for medical researchers and should inform which topics are taught in graduate programs and evidence-based medicine courses where learners need to read and understand the medical research literature.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.