Chronic subclinical mastitis is usually not treated during the lactation. However, some veterinarians regard treatment of some types of subclinical mastitis to be effective. The goal of this research was to develop a stochastic Monte Carlo simulation model to support decisions around treatment of chronic subclinical mastitis caused by Streptococcus uberis. Factors in the model included the probability of cure after treatment, probability of the cow becoming clinically diseased, transmission of infection to other cows, and physiological effects of the infection. Using basic input parameters for Dutch circumstances, the average economic costs per cow of an untreated chronic subclinical mastitis case caused by Str. uberis in a single quarter from day of diagnosis onwards was €109. With treatment, the average costs were higher (€120). Thus, for the average cow, treatment was not efficient economically. However, the risk of high costs was much higher when cows with chronic subclinical mastitis were not treated. A sensitivity analysis showed that profitability of treatment of chronic subclinical Str. uberis mastitis depended on farm-specific factors (such as economic value of discarded milk) and cow-specific factors (such as day of diagnosis, duration of infection, amount of transmission to other cows and cure rate). Therefore, herd level protocols are not sufficient and decision support should be cow specific. Given the importance of cow-specific factors, information from the current model could be applied to automatic decision support systems.