During minima of solar activity, it is possible to estimate the influence of convection zone turbulence on the magnetic flux tubes forming active regions (ARs), because the toroidal field of the old cycle weakens, and the new toroidal field is still weak. We analyzed ARs of solar minima between 23-24 and 24-25 solar cycles. ARs were classified as regular, irregular and unipolar spots. Regular ARs follow the empirical laws consistent with the Babcock–Leighton dynamo theory. We found that regular ARs dominate by flux and by number during the solar minima. Irregular ARs are mainly represented by bipolar structures of deformed orientation and contribute only one-third in the total flux and one-third in the total number. Very complex multipolar ARs are extremely rare. So, during solar minima the global dynamo still guides the formation of ARs, whereas the turbulence only slightly affects the toroidal flux tubes orientation.