When planetary orbits are numerically integrated for a long time by conventional integrators, the most serious problem is secular errors in the energy and the angular momentum of the planetary system due to discretization (truncation) errors. The secular errors in the energy and the angular momentum mean that the semi-major axes, the eccentricities, and the inclinations of planetary orbits have a secular error which grows linearly with time. Recently symplectic integrators and linear symmetric multistep integrators are found not to produce the secular errors in the energy and the angular momentum due to the discretization errors. Here we describe briefly both methods and discuss favorable properties of these integrators for a long-term integration of planetary orbits.