We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We observe that every self-dual ternary code determines a holomorphic
$\mathcal N=1$
superconformal field theory. This provides ternary constructions of some well-known holomorphic
$\mathcal N=1$
superconformal field theories (SCFTs), including Duncan’s “supermoonshine” model and the fermionic “beauty and the beast” model of Dixon, Ginsparg, and Harvey. Along the way, we clarify some issues related to orbifolds of fermionic holomorphic CFTs. We give a simple coding-theoretic description of the supersymmetric index and conjecture that for every self-dual ternary code this index is divisible by
$24$
; we are able to prove this conjecture except in the case when the code has length
$12$
mod
$24$
. Lastly, we discuss a conjecture of Stolz and Teichner relating
$\mathcal N=1$
SCFTs with Topological Modular Forms. This conjecture implies constraints on the supersymmetric indexes of arbitrary holomorphic SCFTs, and suggests (but does not require) that there should be, for each k, a holomorphic
$\mathcal N=1$
SCFT of central charge
$12k$
and index
$24/\gcd (k,24)$
. We give ternary code constructions of SCFTs realizing this suggestion for
$k\leq 5$
.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.