We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider subgraph counts in general preferential attachment models with power-law degree exponent $\tau > 2$. For all subgraphs H, we find the scaling of the expected number of subgraphs as a power of the number of vertices. We prove our results on the expected number of subgraphs by defining an optimization problem that finds the optimal subgraph structure in terms of the indices of the vertices that together span it and by using the representation of the preferential attachment model as a Pólya urn model.
This chapter provides basic concepts about multi-column counter-current chromatography. The benefit of counter-current contact in separation processes is demonstrated considering cascades of equilibrium stages. Based on this, the true moving bed (TMB) process and the simulated moving bed (SMB) process are introduced. Then, the design space of the TMB and SMB processes leading to a complete separation is identified, starting with simplistic systems and progressively introducing more complex effects, namely non-linear adsorption isotherms and mass transfer limitations. Finally, two process design approaches for multi-column chromatographic processes are presented: an empirical one, which allows to obtain a first guess of the operating conditions from a single-column experiment, and a model-based one, which allows a more rigorous determination of the process variables.
We find, for all sufficiently large $n$ and each $k$, the maximum number of edges in an $n$-vertex graph that does not contain $k\,+\,1$ vertex-disjoint triangles.
This extends a result of Moon [Canad. J. Math. 20 (1968), 96–102], which is in turn an extension of Mantel's Theorem. Our result can also be viewed as a density version of the Corrádi–Hajnal Theorem.
By using an adaptation of the radial generation method, we give an integral formula for the proportion of triangles in a Poisson-Voronoi tessellation, which gives a value of 0.0112354 to 7 decimal places. We also obtain the first four moments of some characteristics of triangles.
The paper considers the bias of Bookstein's mean estimator for shape under the isotropic normal model. This work depends on certain distributional properties of shape variables. An alternative unbiased modified estimator is proposed and its performance is compared with various estimators, including Procrustes and the exact maximum likelihood estimator, in a simulation study.
In this paper we investigate the exact shape distribution for general Gaussian labelled point configurations in two dimensions. The shape density is written in a closed form, in terms of Kendall's or Bookstein's shape variables. The distribution simplifies considerably in certain cases, including the complex normal, isotropic, circular Markov and equal means cases. Various asymptotic properties of the distribution are investigated, including a large variation distribution and the normal approximation for small variations. The triangle case is considered in particular detail, and we compare the density with simulated densities for some examples. Finally, we consider inference problems, with an application in biology.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.