We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To identify risk genes whose expression are regulated by the reported risk variants and to explore the potential regulatory mechanism in schizophrenia (SCZ).
Methods
We systematically integrated three independent brain expression quantitative traits (eQTLs) (CommonMind, GTEx, and BrainSeq Phase 2, a total of 1039 individuals) and GWAS data (56 418 cases and 78 818 controls), with the use of transcriptome-wide association study (TWAS). Diffusion magnetic resonance imaging was utilized to quantify the integrity of white matter bundles and determine whether polygenic risk of novel genes linked to brain structure was present in patients with first-episode antipsychotic SCZ.
Results
TWAS showed that eight risk genes (CORO7, DDAH2, DDHD2, ELAC2, GLT8D1, PCDHA8, THOC7, and TYW5) reached transcriptome-wide significance (TWS) level. These findings were confirmed by an independent integrative approach (i.e. Sherlock). We further conducted conditional analyses and identified the potential risk genes that driven the TWAS association signal in each locus. Gene expression analysis showed that several TWS genes (including CORO7, DDAH2, DDHD2, ELAC2, GLT8D1, THOC7 and TYW5) were dysregulated in the dorsolateral prefrontal cortex of SCZ cases compared with controls. TWS genes were mainly expressed on the surface of glutamatergic neurons, GABAergic neurons, and microglia. Finally, SCZ cases had a substantially greater TWS genes-based polygenic risk (PRS) compared to controls, and we showed that fractional anisotropy of the cingulum-hippocampus mediates the influence of TWS genes PRS on SCZ.
Conclusions
Our findings identified novel SCZ risk genes and highlighted the importance of the TWS genes in frontal-limbic dysfunctions in SCZ, indicating possible therapeutic targets.
Anorexia nervosa (AN) is a psychiatric disorder associated with marked morbidity. Whilst AN genetic studies could identify novel treatment targets, integration of functional genomics data, including transcriptomics and proteomics, would assist to disentangle correlated signals and reveal causally associated genes.
Methods
We used models of genetically imputed expression and splicing from 14 tissues, leveraging mRNA, protein, and mRNA alternative splicing weights to identify genes, proteins, and transcripts, respectively, associated with AN risk. This was accomplished through transcriptome, proteome, and spliceosome-wide association studies, followed by conditional analysis and finemapping to prioritise candidate causal genes.
Results
We uncovered 134 genes for which genetically predicted mRNA expression was associated with AN after multiple-testing correction, as well as four proteins and 16 alternatively spliced transcripts. Conditional analysis of these significantly associated genes on other proximal association signals resulted in 97 genes independently associated with AN. Moreover, probabilistic finemapping further refined these associations and prioritised putative causal genes. The gene WDR6, for which increased genetically predicted mRNA expression was correlated with AN, was strongly supported by both conditional analyses and finemapping. Pathway analysis of genes revealed by finemapping identified the pathway regulation of immune system process (overlapping genes = MST1, TREX1, PRKAR2A, PROS1) as statistically overrepresented.
Conclusions
We leveraged multiomic datasets to genetically prioritise novel risk genes for AN. Multiple-lines of evidence support that WDR6 is associated with AN, whilst other prioritised genes were enriched within immune related pathways, further supporting the role of the immune system in AN.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.