We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For a bivariate random vector $(X, Y)$, suppose $X$ is some interesting loss variable and $Y$ is a benchmark variable. This paper proposes a new variability measure called the joint tail-Gini functional, which considers not only the tail event of benchmark variable $Y$, but also the tail information of $X$ itself. It can be viewed as a class of tail Gini-type variability measures, which also include the recently proposed tail-Gini functional. It is a challenging and interesting task to measure the tail variability of $X$ under some extreme scenarios of the variables by extending the Gini's methodology, and the two tail variability measures can serve such a purpose. We study the asymptotic behaviors of these tail Gini-type variability measures, including tail-Gini and joint tail-Gini functionals. The paper conducts this study under both tail dependent and tail independent cases, which are modeled by copulas with so-called tail order property. Some examples are also shown to illuminate our results. In particular, a generalization of the joint tail-Gini functional is considered to provide a more flexible version.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.