Let S be a Riemann surface of finite type. Let ω be a pseudo-Anosov map of S that is obtained from Dehn twists along two families {A,B} of simple closed geodesics that fill S. Then ω can be realized as an extremal Teichmüller mapping on a surface of the same type (also denoted by S). Let ϕ be the corresponding holomorphic quadratic differential on S. We show that under certain conditions all possible nonpuncture zeros of ϕ stay away from all closures of once punctured disk components of S∖{A,B}, and the closure of each disk component of S∖{A,B} contains at most one zero of ϕ. As a consequence, we show that the number of distinct zeros and poles of ϕ is less than or equal to the number of components of S∖{A,B}.