A 13.94-m-long sediment core, collected from a medium-sized lake in the Qilian Mountains (NE Tibetan Plateau, China), was analysed palynologically at 81 horizons. The interpretation of indicator taxa yielded various vertical shifts of the vegetation belts. These palaeovegetation results have been checked with lake surface pollen spectra from 8 lakes representing different altitudinal vegetation belts. Our main findings are the following: A short period of the late Marine Isotope Stage 3 (around ∼46,000 yr ago) was characterized by interglacial temperature conditions with a tree line above its present-day altitude. During the LGM, the vicinity of the lake was not covered by ice but by sparse alpine vegetation and alpine deserts, indicating that the climate was colder by ∼4–7°C than today. Markedly higher temperatures were inferred from higher arboreal pollen frequencies between ∼13,000 and ∼7,000 yr ago with a Holocene temperature optimum and a maximal Picea–Betula mixed-forest expansion between ∼9,000 and ∼7000 yr ago, when temperatures exceeded the present-day conditions by at least 1–2°C. Alpine steppes and meadows and sub-alpine shrub vegetation dominated around the lake since the middle Holocene, suggesting that vegetation and climate conditions were exceptionally stable in comparison to previous periods.