In this paper, we study the regularity of a weak solution for a coupled system derived from a microwave-heating model. The main feature of this model is that electric conductivity in the electromagnetic field is assumed to be temperature dependent. It is shown that the weak solution of the coupled system possesses some regularity under certain conditions. In particular, it is shown that the temperature is Hölder continuous, even if electric conductivity has a jump discontinuity with respect to the temperature change. The main idea in the proof is based on an estimate for a linear degenerate system in Campanato space. As an application, the regularity result for the coupled system is used to derive the necessary condition for an optimal control problem arising in microwave heating processes.