The beginning of the transition from the laminar to a turbulent flow is usually the generation of instability Tollmien-Schlichting (T-S) waves in the boundary layer. Previously, most numerical and experimental researches focused on generating instability T-S waves through the external disturbances such as acoustic waves and vortical disturbances interacting with wall roughness or at the leading-edge of flatplate, whereas only a few paid attention to the excitation of the T-S waves directly by free-stream turbulence (FST). In this study, the generating mechanism of the temporal mode T-S waves under free-stream turbulence is investigated by using direct numerical simulation (DNS) and fast Fourier transform. Wave packets superposed by a group of stability, neutral and instability T-S waves are discovered in the boundary layer. In addition, the relation between the amplitude of the imposed free-stream turbulence and the amplitude of the excited T-S wave is also obtained.