We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To review the history of moist therapy used to regenerate traumatic tympanic membrane perforations.
Study design:
Literature review.
Methods:
The literature on topical agents used to treat traumatic tympanic membrane perforations was reviewed, and the advantages and disadvantages of moist therapy were analysed.
Results:
A total of 76 studies were included in the analysis. Topical applications of certain agents (e.g. growth factors, Ofloxacin Otic Solution, and insulin solutions) to the moist edges of traumatic tympanic membrane perforations shortened closure times and improved closure rates.
Conclusion:
Dry tympanic membrane perforation edges may be associated with crust formation and centrifugal migration, delaying perforation closure. On the contrary, moist edges inhibit necrosis at the perforation margins, stimulate proliferation of granulation tissue and aid eardrum healing. Thus, moist perforation margins upon topical application of solutions of appropriate agents aid the regeneration of traumatic tympanic membrane perforations.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.