We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To assess the relative validity and reproducibility of the quantitative FFQ used in the Tzu Chi Health Study (TCHS).
Design
The reproducibility was evaluated by comparing the baseline FFQ with the 2-year follow-up FFQ. The validity was evaluated by comparing the baseline FFQ with 3 d dietary records and biomarkers (serum folate and vitamin B12). Median comparison, cross-classification and Spearman correlation with and without energy adjustment and deattenuation for day-to-day variation were assessed.
Setting
TCHS is a prospective cohort containing a high proportion of true vegetarians and part-time vegetarians (regularly consuming a vegetarian diet without completely avoiding meat).
Subject
Subsets of 103, seventy-eight and 1528 TCHS participants were included in the reproducibility, dietary record-validity and biomarker-validity studies, respectively.
Results
Correlations assessing the reproducibility for repeat administrations of the FFQ were in the range of 0·46–0·65 for macronutrients and 0·35–0·67 for micronutrients; the average same quartile agreement was 40%. The correlation between FFQ and biomarkers was 0·41 for both vitamin B12 and folate. Moderate to good correlations between the baseline FFQ and dietary records were found for energy, protein, carbohydrate, saturated and monounsaturated fat, fibre, vitamin C, vitamin A, K, Ca, Mg, P, Fe and Zn (average crude correlation: 0·47 (range: 0·37–0·66); average energy-adjusted correlation: 0·43 (range: 0·38–0·55); average energy-adjusted deattenuated correlation: 0·50 (range: 0·44–0·66)) with same quartile agreement rate of 39% (range: 35–45%), while misclassification to the extreme quartile was rare (average: 4% (range: 0–6%)).
Conclusions
The FFQ is a reliable and valid tool to rank relative intake of major nutrients for TCHS participants.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.