We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Ultra dense networks with directional antennas, like millimetre wave (mmWave) networks, have some promising features about secure communications. This chapter explores the potential of physical layer security in mmWave ultra dense networks. Specifically, we mainly introduced the impact of mmWave channel characteristics, random blockages, and antenna gains on the secrecy performance. Our results reveal that mmWave frequency to high mmWave frequency is demanded to obtain a higher secrecy rate. In addition, new antenna pattern models are needed to well characterize the effective antenna gain for a random interferer seen by the typical receiver when the number of mmWave antennas grows large.
Due to the proliferation of smart devices, internet-of-things (IoT) devices, and device-to-device (D2D) communications, the amount of mobile traffic is ever-growing. To satisfy this skyrocketing wireless data traffic demand of mobile users, the densification of the network is unaviodable. However, the denser network not only improves the transmission rate, but also increases the impact of interferences. Therefore, careful deployment of base stations (BSs) is needed to guarantee the communication quality. This chapter provides insights into the deployment of BSs in the multi-layer ultra dense network (UDN). Throughout this chapter, we will model the channel between the BSs and a typical user equipment (UE) by considering the antenna height of the BSs and derive the expressions for the interference, the coverage probability, and the area spectral efficiency (ASE) of our considered multi-layer UDN using stochastic geometry. Through numerical results, we will show how the network performance can be maximized by selecting the proper antenna heights and the densities of BSs in the multi-layer UDN.
In recent years, the overall network data traffic is dramatic increasing,a promising solution is the deployment of ultra dense networks (UDNs) combined with millimeter wave (mmWave) communication technology, which is expected to enhance the overall performance of the network in terms of energy efficiency and load balancing. In this chapter,user association and power allocation inmmWave-based UDNs is considered with attention to load balance constraints, energy harvesting by base stations, user quality of service requirements, energy efficiency, and cross-tier interference limits. This chapter not only establish the system utility optimal function model in the limitations of power and QoS, but also gives an iterative gradient user association and power allocation algorithm to resolve the optimization issue. This algorithm provides a best ratio of convergence and can get a near optimal scheme. In addtion, through utilizing Lagrangian dual decomposition, the dual optimization issue is disintegrated to two sub-problems, we can resolve them respectively. The simulation datum indicate that our method is effective.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.