The layout of seafloor datum points is the key to constructing the seafloor geodetic datum network, and a reliable underwater positioning model is the prerequisite for achieving precise deployment of the datum points. The traditional average sound speed positioning model is generally adopted in underwater positioning due to its simple and efficient algorithm, but it is sensitive to incident angle related errors, which lead to unreliable positioning results. Based on the relationship between incident angle and sound speed, the sound speed function model considering the incident angle has been established. Results show that the accuracy of positioning is easily affected by errors related to the incident angle; the new average sound speed correction model based on the incident angle proposed in this paper is used to significantly improve the underwater positioning accuracy.