We analyze a numerical model for the Signorini unilateral contact, based on the mortarmethod, in the quadratic finite element context. The mortar frame enables one to usenon-matching grids and brings facilities in the mesh generation of different components ofa complex system. The convergence rates we state here are similar to those alreadyobtained for the Signorini problem when discretized on conforming meshes. The matching forthe unilateral contact driven by mortars preserves then the proper accuracy of thequadratic finite elements. This approach has already been used and proved to be reliablefor the unilateral contact problems even for large deformations. We provide however somenumerical examples to support the theoretical predictions.