We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We investigate numbers of faces of polytopes. We begin with the face numbers of 3-polytopes. The characterisation of $f$-vectors of $d$-polytopes ($d\ge 4$) is beyond our current means.In view of this, researchers have considered characterisations of the "projections" of the $f$-vectors, namely the proper subsequences of the $f$-vector; we review the existing results. Section 8.2 gives a proof of a theorem of Xue (2021) on the minimum number of faces of $d$-polytopes with at most $2d$ vertices, answering a conjecture of Grunbaum (2003). This is followed by results on the minimum number of faces of $d$-polytopes with more than $2d$ vertices. We then discuss the lower and upper bound theorems for simplicial polytopes, due to Barnette (1973) and McMullen (1970), respectively, and their extensions such as the $g$-conjecture of McMullen (1971), now the $g$-theorem. The proof of the lower bound theorem connects rigidity theory and the combinatorics polytopes. The chapter ends with a discussion of the flag vector of a polytope. This includes a result of Bayer and Billera (1985) on linear equations for flag vectors like the Dehn--Sommerville’s equations for simplicial polytopes.
This book introduces convex polytopes and their graphs, alongside the results and methodologies required to study them. It guides the reader from the basics to current research, presenting many open problems to facilitate the transition. The book includes results not previously found in other books, such as: the edge connectivity and linkedness of graphs of polytopes; the characterisation of their cycle space; the Minkowski decomposition of polytopes from the perspective of geometric graphs; Lei Xue's recent lower bound theorem on the number of faces of polytopes with a small number of vertices; and Gil Kalai's rigidity proof of the lower bound theorem for simplicial polytopes. This accessible introduction covers prerequisites from linear algebra, graph theory, and polytope theory. Each chapter concludes with exercises of varying difficulty, designed to help the reader engage with new concepts. These features make the book ideal for students and researchers new to the field.
We study $n$-vertex $d$-dimensional polytopes with at most one nonsimplex facet with, say, $d+s$ vertices, called almost simplicial polytopes. We provide tight lower and upper bound theorems for these polytopes as functions of $d,n$, and $s$, thus generalizing the classical Lower Bound Theorem by Barnette and the Upper Bound Theorem by McMullen, which treat the case where $s=0$. We characterize the minimizers and provide examples of maximizers for any $d$. Our construction of maximizers is a generalization of cyclic polytopes, based on a suitable variation of the moment curve, and is of independent interest.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.