We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A metric space $\text{M=}\left( M;\text{d} \right)$ is homogeneous if for every isometry $f$ of a finite subspace of $\text{M}$ to a subspace of $\text{M}$ there exists an isometry of $\text{M}$ onto $\text{M}$ extending $f$. The space $\text{M}$ is universal if it isometrically embeds every finite metric space $\text{F}$ with $\text{dist}\left( \text{F} \right)\subseteq \text{dist}\left( \text{M} \right)$ (with $\text{dist}\left( \text{M} \right)$ being the set of distances between points in $\text{M}$).
A metric space $U$ is a Urysohn metric space if it is homogeneous, universal, separable, and complete. (We deduce as a corollary that a Urysohn metric space $U$ isometrically embeds every separable metric space $\text{M}$ with $\text{dist}\left( \text{M} \right)\subseteq \text{dist}\left( U \right)$.)
The main results are: (1) A characterization of the sets $\text{dist}\left( U \right)$ for Urysohn metric spaces $U$. (2) If $R$ is the distance set of a Urysohn metric space and $\text{M}$ and $\text{N}$ are two metric spaces, of any cardinality with distances in $R$, then they amalgamate disjointly to a metric space with distances in $R$. (3) The completion of every homogeneous, universal, separable metric space $\text{M}$ is homogeneous.
We investigate extensions of S. Solecki's theorem on closing off finite partial isometries of metric spaces [11] and obtain the following exact equivalence: any action of a discrete group Γ by isometries of a metric space is finitely approximable if and only if any product of finitely generated subgroups of Γ is closed in the profinite topology on Γ.
Given a finitely generated group Γ we study the space Isom(Γ, ) of all actions of Γ by isometries of the rational Urysohn metric space , where Isom (Γ, ) is equipped with the topology it inherits seen as a closed subset of Isom . When Γ is the free group on n generators this space is just Isom , but is in general significantly more complicated. We prove that when Γ is finitely generated Abelian there is a generic point in Isom(Γ, ), i.e., there is a comeagre set of mutually conjugate isometric actions of Γ on .
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.