In this work, the secular evolution of exoplanetary systems is investigated, when the variability of the masses of celestial bodies is the leading factor of dynamical evolution. The masses of the parent star and the planets change due to the particles leaving the bodies and falling on them. At the same time, bodies masses are assumed to change isotropically at different rates. The law of mass change is considered to be known and given function of time. The relative motions of the planets are investigated by the methods of the canonical perturbation theory in the absence of resonances. It is assumed that the orbits of the planets do not intersect. Evolutionary equations in analogues of Poincaré variables (Λi, λi, ξi, ηi, pi, qi) are obtained and used to study the K2-3 exoplanetary system. All analytical and numerical calculations are performed with the aid of the Wolfram Mathematica.