Glyphosate-tolerant and glyphosate-resistant weeds are becoming increasingly problematic in cotton fields in Australia, necessitating a return from a glyphosate dominated system to a more integrated approach to weed management. The development of an integrated weed management system can be facilitated by identifying the critical period for weed control (CPWC), a model that enables cotton growers to optimize the timing of their weed control inputs. Using data from field studies conducted from 2003 to 2015, CPWC models using extended functions, including weed biomass in the relationships, were developed for the mimic weeds, common sunflower and Japanese millet, in high-yielding, fully irrigated cotton. A multispecies CPWC model was developed after combining these data sets with data for mungbean in irrigated cotton, using weed height and weed biomass as descriptors in the models. Comparison of observed and predicted relative cotton-lint yields from the multispecies CPWC model demonstrated that the model reasonably described the competition from these three very different mimic weeds, opening the possibility for cotton growers to use a multispecies CPWC model in their production systems.