This paper develops the estimation method of mean and covariance functions of functional data with additional covariate information. With the strength of both local linear smoothing modeling and general weighing scheme, we are able to explicitly characterize the mean and covariance functions with incorporating covariate for irregularly spaced and sparsely observed longitudinal data, as typically encountered in engineering technology or biomedical studies, as well as for functional data which are densely measured. Theoretically, we establish the uniform convergence rates of the estimators in the general weighing scheme. Monte Carlo simulation is conducted to investigate the finite-sample performance of the proposed approach. Two applications including the children growth data and white matter tract dataset obtained from Alzheimer's Disease Neuroimaging Initiative study are also provided.