We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Panic disorder with agoraphobia is characterized by panic attacks and anxiety in situations where escape might be difficult. However, neuroimaging studies specifically focusing on agoraphobia are rare. Here we used functional magnetic resonance imaging (fMRI) with disorder-specific stimuli to investigate the neural substrates of agoraphobia.
Method
We compared the neural activations of 72 patients suffering from panic disorder with agoraphobia with 72 matched healthy control subjects in a 3-T fMRI study. To isolate agoraphobia-specific alterations we tested the effects of the anticipation and perception of an agoraphobia-specific stimulus set. During fMRI, 48 agoraphobia-specific and 48 neutral pictures were randomly presented with and without anticipatory stimulus indicating the content of the subsequent pictures (Westphal paradigm).
Results
During the anticipation of agoraphobia-specific pictures, stronger activations were found in the bilateral ventral striatum and left insula in patients compared with controls. There were no group differences during the perception phase of agoraphobia-specific pictures.
Conclusions
This study revealed stronger region-specific activations in patients suffering from panic disorder with agoraphobia in anticipation of agoraphobia-specific stimuli. Patients seem to process these stimuli more intensively based on individual salience. Hyperactivation of the ventral striatum and insula when anticipating agoraphobia-specific situations might be a central neurofunctional correlate of agoraphobia. Knowledge about the neural correlates of anticipatory and perceptual processes regarding agoraphobic situations will help to optimize and evaluate treatments, such as exposure therapy, in patients with panic disorder and agoraphobia.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.