We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Consider the scattering of a time-harmonic acoustic incident wave by a bounded, penetrable, and isotropic elastic solid, which is immersed in a homogeneous compressible air or fluid. The paper concerns the numerical solution for such an acoustic-elastic interaction problem in three dimensions. An exact transparent boundary condition (TBC) is developed to reduce the problem equivalently into a boundary value problem in a bounded domain. The perfectly matched layer (PML) technique is adopted to truncate the unbounded physical domain into a bounded computational domain. The well-posedness and exponential convergence of the solution are established for the truncated PML problem by using a PML equivalent TBC. An a posteriori error estimate based adaptive finite element method is developed to solve the scattering problem. Numerical experiments are included to demonstrate the competitive behavior of the proposed method.
An adaptive finite element method is adopted to simulate the steady state coupled Schrödinger equations with a small parameter. We use damped Newton iteration to solve the nonlinear algebraic system. When the solution domain is elliptic, our numerical results with Dirichlet or Neumann boundary conditions are consistent with previous theoretical results. For the dumbbell and circular ring domains with Dirichlet boundary conditions, we obtain some new results that may be compared with future theoretical analysis.
In this paper, a local multilevel algorithm is investigated for solving linear systems arising from adaptive finite element approximations of second order elliptic problems with smooth complex coefficients. It is shown that the abstract theory for local multilevel algorithm can also be applied to elliptic problems whose dominant coefficient is complex valued. Assuming that the coarsest mesh size is sufficiently small, we prove that this algorithm with Gauss-Seidel smoother is convergent and optimal on the adaptively refined meshes generated by the newest vertex bisection algorithm. Numerical experiments are reported to confirm the theoretical analysis.
This paper studies convergence analysis of an adaptive finite element algorithm for numerical estimation of some unknown distributed flux in a stationary heat conduction system, namely recovering the unknown Neumann data on interior inaccessible boundary using Dirichlet measurement data on outer accessible boundary. Besides global upper and lower bounds established in [23], a posteriori local upper bounds and quasi-orthogonality results concerning the discretization errors of the state and adjoint variables are derived. Convergence and quasi-optimality of the proposed adaptive algorithm are rigorously proved. Numerical results are presented to illustrate the quasi-optimality of the proposed adaptive method.
A dual-weighted residual approach for goal-oriented adaptive finite elements for a class
of optimal control problems for elliptic variational inequalities is studied. The
development is based on the concept of C-stationarity. The overall error representation
depends on primal residuals weighted by approximate dual quantities and vice versa
as well as various complementarity mismatch errors. Also, a priori
bounds for C-stationary points and associated multipliers are derived. Details on
the numerical realization of the adaptive concept are provided and a report on numerical
tests including the critical cases of biactivity are presented.
We consider the solution of second order elliptic PDEs in Rdwith inhomogeneous Dirichlet data by means of an h–adaptive FEM withfixed polynomial order p ∈ N. As model example serves the Poissonequation with mixed Dirichlet–Neumann boundary conditions, where the inhomogeneousDirichlet data are discretized by use of an H1 / 2–stableprojection, for instance, the L2–projection forp = 1 or the Scott–Zhang projection for general p ≥ 1.For error estimation, we use a residual error estimator which includes the Dirichlet dataoscillations. We prove that each H1 / 2–stable projectionyields convergence of the adaptive algorithm even with quasi–optimal convergence rate.Numerical experiments with the Scott–Zhang projection conclude the work.
Consider the acoustic wave scattering by an impenetrable obstacle in two dimensions, where the wave propagation is governed by the Helmholtz equation. The scattering problem is modeled as a boundary value problem over a bounded domain. Based on the Dirichlet-to-Neumann (DtN) operator, a transparent boundary condition is introduced on an artificial circular boundary enclosing the obstacle. An adaptive finite element based on a posterior error estimate is presented to solve the boundary value problem with a nonlocal DtN boundary condition. Numerical experiments are included to compare with the perfectly matched layer (PML) method to illustrate the competitive behavior of the proposed adaptive method.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.