We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Given an integer $k\ge 2$, let $\omega _k(n)$ denote the number of primes that divide n with multiplicity exactly k. We compute the density $e_{k,m}$ of those integers n for which $\omega _k(n)=m$ for every integer $m\ge 0$. We also show that the generating function $\sum _{m=0}^\infty e_{k,m}z^m$ is an entire function that can be written in the form $\prod _{p} \bigl (1+{(p-1)(z-1)}/{p^{k+1}} \bigr )$; from this representation we show how to both numerically calculate the $e_{k,m}$ to high precision and provide an asymptotic upper bound for the $e_{k,m}$. We further show how to generalize these results to all additive functions of the form $\sum _{j=2}^\infty a_j \omega _j(n)$; when $a_j=j-1$ this recovers a classical result of Rényi on the distribution of $\Omega (n)-\omega (n)$.
Let $I(n)$ denote the number of isomorphism classes of subgroups of $(\mathbb{Z}/n\mathbb{Z})^{\times }$, and let $G(n)$ denote the number of subgroups of $(\mathbb{Z}/n\mathbb{Z})^{\times }$ counted as sets (not up to isomorphism). We prove that both $\log G(n)$ and $\log I(n)$ satisfy Erdős–Kac laws, in that suitable normalizations of them are normally distributed in the limit. Of note is that $\log G(n)$ is not an additive function but is closely related to the sum of squares of additive functions. We also establish the orders of magnitude of the maximal orders of $\log G(n)$ and $\log I(n)$.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.