Hot deformation behavior and microstructure evolution of as-cast Mn18Cr18N austenitic stainless steel were investigated by isothermal compression experiments. The results indicate that the microstructure evolution of the as-cast Mn18Cr18N steel is sensitive to strain rates. Discontinuous dynamic recrystallization, characterized by nucleation and growth controlled by grain boundary migration, occurs at lower strain rates. However, higher strain rates result in higher adiabatic temperature rise, which could be contributed to dynamic recrystallization (DRX) nucleation and growth by acceleration boundary migration. In addition, at higher strain rates, a large number of deformation microbands in the interior of coarse columnar grains were observed, which would provide potential nucleation sites for DRX. Meanwhile, a great number of Σ3 twins were observed, which reveals that twinning accelerates the separation of subgrains from bulging grain boundaries, and the iterative processing among Σ3 twins and its variants promotes the transformation from specific CSL grain boundaries to random high-angle boundaries.