We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The surrounding air flow around a hypersonic vehicle behaves quite differently from supersonic flows. The kinetic energy is converted into internal energy which can increase the flow temperature and induce endothermic reactions near the vehicle surface. It is a challenge to develop flow diagnostic and aerodynamic measurement technologies with high precision for high-enthalpy wind tunnel tests. There are, generally, three types of measurement technologies widely used in exploring high-enthalpy flows, including heat-transfer measurement, aerodynamic balance, and optical diagnostic techniques. In this chapter, hypersonic tests with the aforementioned measurement technologies are summarized to demonstrate the progress on high-enthalpy flow experiments. Four kinds of experiments are included here, and the topics are aerodynamic force and moment tests, aerothermal heating measurements, hypersonic boundary-layer flow diagnostics, and supersonic combustion and scramjet engine tests. Actually, there are a lot of interesting topics, but these four are important not only to understand aerothermodynamic physics but also to support the development of hypersonic vehicles.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.