We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Using a simulated airway model, we compared ventilation performance by emergency medical services (EMS) providers using a traditional bag–valve–mask (Easy Grip®) resuscitator to their performance when using a new device, the SMART BAG® resuscitator, which has a pressure-responsive flow-limiting valve.
Methods:
We recruited EMS providers at an EMS educational forum and performed a randomized, non-blinded, prospective crossover comparison of ventilation with 2 devices on a non-intubated simulated airway model. Subjects were instructed to ventilate a Mini Ventilation Training Analyzer® as they would an 85-kg adult patient in respiratory arrest. After being randomized to order of device use, they performed ventilation for 1 minute with each device. Primary outcomes were ventilation rates and peak airway pressures. We also measured average tidal volume, gastric inflation volume, minute ventilation and inspiratory:expiratory (I:E) ratio, and compared our results to the American Heart Association standards (2005 edition).
Results:
We observed statistically significant differences between the SMART BAG® and the traditional bag–valve–mask for respiratory rate (12 v. 14 breaths/min), peak airway pressure (15.6 v. 18.9 cm H2O), gastric inflation (239.6 v. 1598.4 mL), minute ventilation (7980 v. 8775 mL), and I:E ratio (1.3 v. 1.1). Average tidal volume was similar with both devices (679.6 v. 672.2 mL).
Conclusion:
The SMART BAG® provided ventilation performance that was more consistent with American Heart Association guidelines and delivered similar tidal volumes when compared with ventilation with a traditional bag–valve–mask resuscitator.
Riding all-terrain vehicles (ATVs) is a popular recreational activity, with approximately 1.5 million users in Canada. Despite legislation aimed at reducing injury rates, ATV-related incidents remain a major cause of trauma and death. This paper reviews the epidemiology of major injury associated with ATV use in Nova Scotia.
Methods:
The Nova Scotia Trauma Registry was used to identify all adults over age 15 who sustained major ATV-related trauma (Injury Severity Score [ISS] ≥12) within a 5-year period. Demographic variables, temporal statistics, alcohol use, helmet use, injury characteristics and injury outcome variables, including ISS, length of stay (LOS), Glasgow Coma Scale score and discharge status were evaluated.
Results:
Twenty-five patients met the inclusion criteria. Most (92%) were males, and 64% were between 16 and 34 years of age. Most injuries occurred between 1300 hrs and 1900 hrs, 52% occurred on the weekend, and 40% occurred in the spring. The average ISS was 22.1, and injuries to the central nervous system comprised 39% of all major injuries. Alcohol was involved in up to 56% of all incidents, and only 4 patients (16%) were known to be wearing a helmet at the time of injury. Average hospital LOS was 21.6 days.
Interpretation:
ATV-related incidents are a continuing source of major injury. This paper describes the epidemiology of ATV-related major trauma presenting to the sole tertiary care referral centre in one province. Information gained from this study should be used to influence ATV public education programs.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.