We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Equations are derived which link the content of relatively insoluble components Si, Al, Fe and K in source rock and derived alluvial sediment. The equations also involve the ratio of specific suspended load to dissolved load and specific bed load to suspended load (Tb/Ts) for the rivers which deposited the sediments. These ratios are generally unknown, but by analogy with modern rivers are taken to occupy the ranges and 0 ≦ Tb/Ts≦1. This is sufficient to put close limits on the possible composition of the source rock. The equations suggest that clastic sediment forming the Late Proterozoic Torridon Group of Scotland was derived from sediments or metasediments, rather than from average upper continental crust, granitoids or gneisses like those presently exposed nearby.
Mass balance equations are derived which link the ratios Ts/ (suspended load/dissolved load from chemical weathering) and Tb/Ts (bed load/suspended load), with any two geochemical components present in the source rock and the alluvial system. If the dissolved load is unknown the ratios can be estimated from the relatively insoluble silica and alumina. The ratio Ts/, which for large river basins depends on climate and relief, can thus potentially be determined from ancient alluvial sequences.
The equations help define the source composition of a group of 13 modern rivers for which Ts, and alluvial geochemistry are known. These rivers together drain 27% of the continental surface. For a source area with the average continental sandstone to shale ratio of 0·6 the observed average value of Ts/ is obtained when limestone, sandstone and shale are present in the proportions 6·7:21·6:35·7. The figure of 64% sediment in the source area is very similar to the 66% determined by Blatt and Jones (1975) from geological maps of the continents. The equations also show that average bed load transport rate into these 13 basins is about 27% of total transport, and into the Amazon basin about 37%. Bed load transport rates out of the basins, into the sea, are relatively very small.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.