We propose a functional version of extended redundancy analysis that examines directional relationships among several sets of multivariate variables. As in extended redundancy analysis, the proposed method posits that a weighed composite of each set of exogenous variables influences a set of endogenous variables. It further considers endogenous and/or exogenous variables functional, varying over time, space, or other continua. Computationally, the method reduces to minimizing a penalized least-squares criterion through the adoption of a basis function expansion approach to approximating functions. We develop an alternating regularized least-squares algorithm to minimize this criterion. We apply the proposed method to real datasets to illustrate the empirical feasibility of the proposed method.