Greenhouse trials were conducted to determine the response of stevia to reduced-risk synthetic and nonsynthetic herbicides applied over-the-top post-transplant. In addition, field trials were conducted with stevia grown in a polyethylene mulch production system to determine crop response and weed control in planting holes to reduced-risk synthetic and nonsynthetic herbicides applied post-transplant directed. Treatments included caprylic acid plus capric acid, clove oil plus cinnamon oil, d-limonene, acetic acid (200 grain), citric acid, pelargonic acid, eugenol, ammonium nonanoate, and ammoniated soap of fatty acids. Stevia yield (dry aboveground biomass) in the greenhouse was reduced by all herbicide treatments. Citric acid and clove oil plus cinnamon oil were the least injurious, reducing yield by 16% to 20%, respectively. In field studies, d-limonene, pelargonic acid, ammonium nonanoate, and ammoniated soap of fatty acids controlled Palmer amaranth (>90% 1 wk after treatment (WAT). In field studies caprylic acid plus capric acid, pelargonic acid, and ammonium nonanoate caused >30% injury to stevia plants at 2 WAT, and d-limonene, citric acid, acetic acid, and ammoniated soap of fatty acids caused 18% to 25% injury 2 WAT. Clove oil plus cinnamon oil and eugenol caused <10% injury. Despite being injurious, herbicides applied in the field did not reduce yield compared to the nontreated check. Based upon yield data, these herbicides have potential for use in stevia; however, these products could delay harvest if applied to established stevia. In particular, clove oil plus cinnamon oil has potential for use for early-season weed management for organic production systems. The application of clove oil plus cinnamon oil over-the-top resulted in <10% injury 28 d after treatment (DAT) in the greenhouse and 3% injury 6 WAT postemergence-directed in the field. In addition, this treatment provided 95% control of Palmer amaranth 4 WAT.