We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Bershadsky, Cecotti, Ooguri and Vafa constructed a real-valued invariant for Calabi–Yau manifolds, which is now called the BCOV invariant. In this paper, we extend the BCOV invariant to such pairs $(X,D)$, where $X$ is a compact Kähler manifold and $D$ is a pluricanonical divisor on $X$ with simple normal crossing support. We also study the behavior of the extended BCOV invariant under blow-ups. The results in this paper lead to a joint work with Fu proving that birational Calabi–Yau manifolds have the same BCOV invariant.
Yoshikawa in [Invent. Math. 156 (2004), 53–117] introduces a holomorphic torsion invariant of $K3$ surfaces with involution. In this paper we completely determine its structure as an automorphic function on the moduli space of such $K3$ surfaces. On every component of the moduli space, it is expressed as the product of an explicit Borcherds lift and a classical Siegel modular form. We also introduce its twisted version. We prove its modularity and a certain uniqueness of the modular form corresponding to the twisted holomorphic torsion invariant. This is used to study an equivariant analogue of Borcherds’ conjecture.
In [31] we defined a regularized analytic torsion for quotients of the symmetric space $\operatorname{SL}(n,\mathbb{R})/\operatorname{SO}(n)$ by arithmetic lattices. In this paper we study the limiting behavior of the analytic torsion as the lattices run through sequences of congruence subgroups of a fixed arithmetic subgroup. Our main result states that for principal congruence subgroups and strongly acyclic flat bundles, the logarithm of the analytic torsion, divided by the index of the subgroup, converges to the $L^{2}$-analytic torsion.
For an odd-dimensional oriented hyperbolic manifold with cusps and strongly acyclic coefficient systems, we define the Reidemeister torsion of the Borel–Serre compactification of the manifold using bases of cohomology classes defined via Eisenstein series by the method of Harder. In the main result of this paper we relate this combinatorial torsion to the regularized analytic torsion. Together with results on the asymptotic behaviour of the regularized analytic torsion, established previously, this should have applications to study the growth of torsion in the cohomology of arithmetic groups. Our main result is established via a gluing formula, and here our approach is heavily inspired by a recent paper of Lesch.
We use Toeplitz operators to evaluate the leading term in the asymptotics of the analytic torsion forms associated with a family of flat vector bundles $F_{p}$. For $p\in \mathbf{N}$, the flat vector bundle $F_{p}$ is the direct image of $L^{p}$, where $L$ is a holomorphic positive line bundle on the fibres of a flat fibration by compact Kähler manifolds. The leading term of the analytic torsion forms is the integral along the fibre of a locally defined differential form.
In this paper, we provide a concrete interpretation of equivariant Reidemeister torsion, and demonstrate that Bismut–Zhang’s equivariant Cheeger–Müller theorem simplifies considerably when applied to locally symmetric spaces. In a companion paper, this allows us to extend recent results on torsion cohomology growth and torsion cohomology comparison for arithmetic locally symmetric spaces to an equivariant setting.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.