We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The integration of DNA and RNA nucleobases to improve the performance of organic light-emitting diodes, as a low-cost and environmentally friendly optoelectronic device, has attracted a lot of interest in recent years. As a contribution to an improved understanding of the DNA/RNA-based devices in the solid state, we presented here a dispersion corrected density functional theory (DFT) and time-dependent DFT calculations to obtain the optimized geometries, Kohn-Sham band structures, charge distribution, optical absorption, Frenkel exciton binding energies, and complex dielectric functions of the five DNA/RNA nucleobases anhydrous crystals. Optical absorption measurements on the DNA/RNA nucleobase powders were also performed for comparison with the simulations. Effective masses for the carriers were calculated, indicating that the guanine and the cytosine crystals have potential applications in optoelectronics as a direct gap semiconductor, with the other nucleobases (adenine, thymine, and uracil) presenting either a semiconductor or an insulator character, depending on the carrier type.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.