We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Suppose that $G$ is a simple reductive group over $\mathbf{Q}$, with an exceptional Dynkin type and with $G(\mathbf{R})$ quaternionic (in the sense of Gross–Wallach). In a previous paper, we gave an explicit form of the Fourier expansion of modular forms on $G$ along the unipotent radical of the Heisenberg parabolic. In this paper, we give the Fourier expansion of the minimal modular form $\unicode[STIX]{x1D703}_{Gan}$ on quaternionic $E_{8}$ and some applications. The $Sym^{8}(V_{2})$-valued automorphic function $\unicode[STIX]{x1D703}_{Gan}$ is a weight 4, level one modular form on $E_{8}$, which has been studied by Gan. The applications we give are the construction of special modular forms on quaternionic $E_{7},E_{6}$ and $G_{2}$. We also discuss a family of degenerate Heisenberg Eisenstein series on the groups $G$, which may be thought of as an analogue to the quaternionic exceptional groups of the holomorphic Siegel Eisenstein series on the groups $\operatorname{GSp}_{2n}$.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.