We describe all finite dimensional uniserial representations of a commutative associative (resp. abelian Lie) algebra over a perfect (resp. sufficiently large perfect) field. In the Lie case the size of the field depends on the answer to following question, considered and solved in this paper. Let $K/F$ be a finite separable field extension and let $x,\,y\,\in \,K$. When is $F\left[ x,\,y \right]\,=\,F\left[ \alpha x\,+\,\beta y \right]$ for some nonzero elements $\alpha ,\,\beta \,\in \,F?$