The new data release (DR5) of the RAdial Velocity Experiment (RAVE) includes radial velocities of 520,781 spectra of 457,588 individual stars, of which 215,590 individual stars are released in the Tycho-Gaia astrometric solution (TGAS) in Gaia DR1. Therefore, RAVE contains the largest TGAS overlap of the recent and ongoing Milky Way spectroscopic surveys. Most of the RAVE stars also contain stellar parameters (effective temperature, surface gravity, overall metallicity), as well as individual abundances for Mg, Al, Si, Ca, Ti, Fe, and Ni. Combining RAVE with TGAS brings the uncertainties in space velocities down by a factor of 2 for stars in the RAVE volume – 10 km s−1 uncertainties in space velocities are now able to be derived for the majority (70%) of the RAVE-TGAS sample, providing a powerful platform for chemo-dynamic analyses of the Milky Way. Here we discuss the RAVE-TGAS impact on Galactic archaeology as well as how the Gaia parallaxes can be used to break degeneracies within the RAVE spectral regime for an even better return in the derivation of stellar parameters and abundances.