Current practice in factor analysis typically involves analysis of correlation rather than covariance matrices. We study whether the standard z-statistic that evaluates whether a factor loading is statistically necessary is correctly applied in such situations and more generally when the variables being analyzed are arbitrarily rescaled. Effects of rescaling on estimated standard errors of factor loading estimates, and the consequent effect on z-statistics, are studied in three variants of the classical exploratory factor model under canonical, raw varimax, and normal varimax solutions. For models with analytical solutions we find that some of the standard errors as well as their estimates are scale equivariant, while others are invariant. For a model in which an analytical solution does not exist, we use an example to illustrate that neither the factor loading estimates nor the standard error estimates possess scale equivariance or invariance, implying that different conclusions could be obtained with different scalings. Together with the prior findings on parameter estimates, these results provide new guidance for a key statistical aspect of factor analysis.