The development of high-performance computing and computational fluid dynamics methods have evolved to the point where it is possible to simulate complete helicopter configurations with good accuracy. Computational fluid dynamics methods have also been applied to problems such as rotor/fuselage and main/tail rotor interactions, performance studies in hover and forward flight, rotor design, and so on. The GOAHEAD project is a good example of a coordinated effort to validate computational fluid dynamics for complex helicopter configurations. Nevertheless, current efforts are limited to steady flight and focus mainly on expanding the edges of the flight envelope. The present work tackles the problem of simulating manoeuvring flight in a computational fluid dynamics environment by integrating a moving grid method and the helicopter flight mechanics solver with computational fluid dynamics. After a discussion of previous works carried out on the subject and a description of the methods used, validation of the computational fluid dynamics for ship airwake flow and rotorcraft flight at low advance ratio are presented. Finally, the results obtained for manoeuvring flight cases are presented and discussed.