We analyze a new formulation of the Stokes equations in
three-dimensional axisymmetric geometries, relying on Fourier expansion with respect to
the angular variable: the problem for each Fourier coefficient is two-dimensional and has
six scalar unknowns, corresponding to the vector potential and the vorticity. A
spectral discretization is built on this formulation, which leads to an exactly
divergence-free discrete velocity. We prove optimal error estimates.