We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The kind of fluid for correcting hypovolaemia is still a focus of debate. In a prospective, randomized, controlled and double-blind study in patients undergoing major abdominal surgery, a total balanced volume replacement strategy including a new balanced hydroxyethyl starch (HES) solution was compared with a conventional, non-balanced fluid regimen.
Methods
In Group A (n = 15), a new balanced 6% HES 130/0.42 was given along with a balanced crystalloid solution; in Group B (n = 15), an unbalanced conventional HES 130/0.42 plus an unbalanced crystalloid (saline solution) were administered. Volume was given when mean arterial pressure (MAP) was <65 mmHg and central venous pressure (CVP) minus positive end-expiratoric pressure (PEEP) level was <10 mmHg. Haemodynamics, acid–base status, coagulation (thrombelastography (TEG)) and kidney function (including kidney-specific proteins, N-acetyl-beta-d-glucosaminidase (beta-NAG) and alpha-1-microglobulin) were measured after induction of anaesthesia, at the end of surgery, 5 and 24 h after surgery.
Results
Group A received 3533 ± 1302 mL of HES and 5333 ± 1063 mL of crystalloids, in Group B, 3866 ± 1674 mL of HES and 5966 ± 1202 mL of crystalloids were given. Haemodynamics, laboratory data, TEG data and kidney function were without significant differences between the groups. Cl− concentration and base excess (−5 ± 2.4 mmol L−1 vs. 0.4 ± 2.4 mmol L−1) were significantly higher in patients of Group B than of Group A.
Conclusions
A complete balanced volume replacement strategy including a new balanced HES preparation resulted in significantly less derangement in acid–base status compared with a non-balanced volume replacement regimen. The new HES preparation showed no negative effects on coagulation and kidney function.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.